Abstract
Cervical cancer is one of the most common cancers that threaten women's lives, and its early screening is of great significance for the prevention and treatment of cervical diseases. Pathologically, the accurate segmentation of cervical cells plays a crucial role in the diagnosis of cervical cancer. However, the frequent presence of adherent or overlapping cervical cells in Pap smear images makes separating them individually a difficult task. Currently, there are few studies on the segmentation of adherent cervical cells, and the existing methods commonly suffer from low segmentation accuracy and complex design processes. To address the above problems, we propose a novel star-convex polygon-based convolutional neural network with an encoder-decoder structure, called SPCNet. The model accomplishes the segmentation of adherent cells relying on three steps: automatic feature extraction, star-convex polygon detection, and non-maximal suppression (NMS). Concretely, a new residual-based attentional embedding (RAE) block is suggested for image feature extraction. It fuses the deep features from the attention-based convolutional layers with the shallow features from the original image through the residual connection, enhancing the network's ability to extract the abundant image features. And then, a polygon-based adaptive NMS (PA-NMS) algorithm is adopted to screen the generated polygon proposals and further achieve the accurate detection of adherent cells, thus allowing the network to completely segment the cell instances in Pap smear images. Finally, the effectiveness of our method is evaluated on three independent datasets. Extensive experimental results demonstrate that the method obtains superior segmentation performance compared to other well-established algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.