Abstract

A new method for the automatic segmentation and quantitative assessment of the left ventricle (LV) is proposed in this paper. The method is composed of two steps. First, a fully convolutional U-net is used for the segmentation of the epi- and endo-cardial boundaries of the LV from cine MR images. This step incorporates a novel loss function that accounts for the class imbalance problem caused by the binary cross entropy (BCE) loss function. Our novel loss function maximizes the segmentation accuracy and penalizes the effect of the class-imbalance caused by BCE. In the second step, the ventricular volume curves are constructed from which LV function parameter is estimated (i.e., ejection fraction). Our method demonstrated a statistical significance in the segmentation of the epi- and endo-cardial boundaries (Dice score of 0.94 and 0.96, respectively) compared with the BCE loss (Dice score of 0.89 and 0.86, respectively). Furthermore, a high positive correlation of 0.97 between the estimated ejection fraction and the gold standard was obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.