Abstract
As the shapes of breast cell are diverse and there is adherent between cells, fast and accurate segmentation for breast cell remains a challenging task. In this paper, an automatic segmentation algorithm for breast cell image is proposed, which focuses on the segmentation of adherent cells. First of all, breast cell image enhancement is carried out by the staining regularization. Then, the cells and background are separated by Multi-scale Convolutional Neural Network (CNN) to obtain the initial segmentation results. Finally, the Curvature Scale Space (CSS) corner detection is used to segment adherent cells. Experimental results show that the proposed algorithm can achieve 93.01% accuracy, 93.93% sensitivity and 95.69% specificity. Compared with other segmentation algorithms of breast cell, the proposed algorithm can not only solve the difficulty of segmenting adherent cells, but also improve the segmentation accuracy of adherent cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Knowledge-based and Intelligent Engineering Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.