Abstract

To develop and evaluate fully automatic scan range delimitation for chest CT by using deep learning. For this retrospective study, scan ranges were annotated by two expert radiologists in consensus in 1149 (mean age, 65 years ± 16 [standard deviation]; 595 male patients) chest CT topograms acquired between March 2002 and February 2019 (350 with pleural effusion, 376 with atelectasis, 409 with neither, 14 with both). A conditional generative adversarial neural network was trained on 1000 randomly selected topograms to generate virtual scan range delimitations. On the remaining 149 topograms the software-based scan delimitations, scan lengths, and estimated radiation exposure were compared with those from clinical routine. For statistical analysis an equivalence test (two one-sided t tests) was used, with equivalence limits of 10 mm. The software-based scan ranges were similar to the radiologists' annotations, with a mean Dice score coefficient of 0.99 ± 0.01 and an absolute difference of 1.8 mm ± 1.9 and 3.3 mm ± 5.6 at the upper and lower boundary, respectively. An equivalence test indicated that both scan range delimitations were similar (P < .001). The software-based scan delimitation led to shorter scan ranges compared with those used in clinical routine (298.2 mm ± 32.7 vs 327.0 mm ± 42.0; P < .001), resulting in a lower simulated total radiation exposure (3.9 mSv ± 3.0 vs 4.2 mSv ± 3.3; P < .001). A conditional generative adversarial neural network was capable of automating scan range delimitation with high accuracy, potentially leading to shorter scan times and reduced radiation exposure.Keywords: Adults and Pediatrics, CT, Computer Applications-Detection/Diagnosis, Convolutional Neural Network (CNN), Lung, Radiation Safety, Segmentation, Supervised learning, Thorax © RSNA, 2021Supplemental material is available for this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.