Abstract

In this paper, we describe a fully automatic method using latent root regression based on the generalized sidelobe canceler (GSC) parameterization of the minimum variance beamformer. The proposed method gives a theoretically optimal solution in mean-squared error (MSE) sense (minimized MSE solution) by choosing a linear combination of individual latent root regression predictors in the GSC formulation. The performance of the resulting beamformer is illustrated via numerical examples and compared with existing automatic diagonal loading techniques including HKB and the general linear combination (GLC) shrinkage-based method. The simulations show that the proposed method usually gives better performance than HKB, meanwhile, is more robust to errors on steering vectors than GLC when the sample sizes are high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.