Abstract
The paper presents a knowledge-based method for automatic road extraction from aerial photography and high-resolution remotely sensed images. The method is based on Marr's theory of vision, which consists of low-level image processing for edge detection and linking, mid-level processing for the formation of road structure, and high-level processing for the recognition of roads. It uses a combined control strategy in which hypotheses are generated in a bottom-up mode and a top-down process is applied to predict the missing road segments. To describe road structures a generalized antiparallel pair is proposed. The hypotheses of road segments are generated based on the knowledge of their geometric and radiometric properties, which are expressed as rules in Prolog. They are verified using part–whole relationships between roads in high-resolution images and roads in low-resolution images and spatial relationships between verified road segments. Some results are presented in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.