Abstract

This paper presents a boon and amend technique for eradicating the artifacts from the Electroencephalogram (EEG) signals. The abolition of artifacts from scalp EEGs is of considerable implication for both the computerized and visual investigation of fundamental brainwave activities. These noise sources increase the difficulty in analyzing the EEG and procurement clinical information related to pathology. Hence it is critical to design a procedure for diminution of such artifacts in EEG archives. This paper uses a blind extraction algorithm, appropriate for the generality of complex-valued sources and both complex noncircular and circular, is introduced. This is achieved based on higher order statistics of dormant sources, and using the deflation approach Spatially-Constrained Independent Component Analysis (SCICA) to separate the Independent Components (ICs) from the initial EEG signal. As the next phase, level-4 daubechies wavelet db4 is applied to extract the brain activity from purged artifacts, and lastly the artifacts are projected back and detracted from EEG signals to get clean EEG data. Here, thresholding plays an imperative role in delineating the artifacts and hence an improved thresholding technique called Otsu’s thresholding is applied. Experimental consequences show that the proposed technique results in better removal of artifacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.