Abstract

A nonlinear digital control scheme is proposed for analyses and designs of stable industry processes. It is derived from the converging characteristic of a specified numerical time series. The ratios of neighbourhoods of the series are formulated as a function of the output of the plant and the reference input command and will be converted to be unities after the output has tracked the reference input command. Lead compensations are also found by another numerical time series to speed up the system responses on the online adjusting manner. A servosystem, a time‐delay system, a high‐order system, a very‐high‐order system, and a 2 × 2 multivariable aircraft gas turbine engine are used to illustrate effectiveness of the proposed nonlinear digital controller. Comparisons with other conventional methods are also made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.