Abstract

PurposeTo accurately record the movements of a hand-held target together with the smooth pursuit eye movements (SPEMs) elicited with video-oculography (VOG) combined with deep learning-based object detection using a single-shot multibox detector (SSD).MethodsThe SPEMs of 11 healthy volunteers (21.3 ± 0.9 years) were recorded using VOG. The subjects fixated on a moving target that was manually moved at a distance of 1 m by the examiner. An automatic recording system was developed using SSD to predict the type and location of objects in a single image. The 400 images that were taken of one subject using a VOG scene camera were distributed into 2 groups (300 and 100) for training and validation. The testing data included 1100 images of all subjects (100 images/subject). The method achieved 75% average precision (AP75) for the relationship between the location of the fixated target (as calculated by SSD) and the position of each eye (as recorded by VOG).ResultsThe AP75 for all subjects was 99.7% ± 0.6%. The horizontal and vertical target locations were significantly and positively correlated with each eye position in the horizontal and vertical directions (adjusted R2 ≥ 0.955, P < 0.001).ConclusionsThe addition of SSD-driven recording of hand-held target positions with VOG allows for quantitative assessment of SPEMs following a target during an SPEM test.Translational RelevanceThe combined methods of VOG and SSD can be used to detect SPEMs with greater accuracy, which can improve the outcome of clinical evaluations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.