Abstract
Measuring how well human listeners recognize speech under varying environmental conditions (speech intelligibility) is a challenge for theoretical, technological, and clinical approaches to speech communication. The current gold standard-human transcription-is time- and resource-intensive. Recent advances in automatic speech recognition (ASR) systems raise the possibility of automating intelligibility measurement. This study tested 4 state-of-the-art ASR systems with second language speech-in-noise and found that one, whisper, performed at or above human listener accuracy. However, the content of whisper's responses diverged substantially from human responses, especially at lower signal-to-noise ratios, suggesting both opportunities and limitations for ASR--based speech intelligibility modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.