Abstract
BackgroundMicronucleus (MN) is an abnormal fragment in a human cell caused by disorders in the mechanism regulating chromosome segregation. It can be used as a biomarker for genotoxicity, tumor risk, and tumor malignancy. The in vitro micronucleus assay is a commonly used method to detect micronucleus. However, it is time-consuming and the visual scoring can be inconsistent.MethodsTo alleviate this issue, we proposed a computer-aided diagnosis method combining convolutional neural networks and visual attention for micronucleus recognition. The backbone of our model is AlexNet without any dense layers and it is pretrained on the ImageNet dataset. Two attention modules are applied to extract cell image features and generate attention maps highlighting the region of interest to improve the interpretability of the network. Given the problems in the data set, we leverage data augmentation and focal loss to alleviate the impact.ResultsExperiments show that the proposed network yields better performance with fewer parameters. The AP value, F1 value and AUC value reach 0.932, 0.811 and 0.995, respectively.ConclusionIn conclusion, the proposed network can effectively recognize micronucleus, and it can play an auxiliary role in clinical diagnosis by doctors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.