Abstract
Bottom-up fabrication techniques are expected to alleviate the limitations of top-down fabrication. Bottom-up fabrication requires self-assembling facilities to construct complex structures including DNA nanostructures, DNA robots, further molecular robots, and so on. DNA origami is one of buttom-up fabrication techniques. In this paper, we focus on the automatic recognition of flexible DNA origami named “DNA pliers” in AFM (atomic force microscopy) image. Auto recognition of DNA pliers is challenging and necessary since DNA pliers can have several forms: parallel, cross, and anti-parallel forms, depending on hinge angles. Our method uses the information of the curvature scale space method and convexity-concavity detection extracted from DNA pliers. The experiments show that the combination of the curvature scale space method and convexity-concavity detection can work well for DNA pliers recognition if appropriate contour information for the DNA pliers is available from an AFM image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.