Abstract

Several large-scale and distributed systems such as renewable energy systems (RESs) require ubiquitous and reliable communication. RESs are designed to provide efficient power management and improve both energy production and consumption. Decision making in RESs heavily depends on real-time communication. Fifth and sixth-generation (5G, 6G) wireless networks promise to deliver significant communication advantages to RESs including ultra-low latency, high throughput and improved coverage. However, the communication behavior in RESs is categorized as unpredictable due to aspects such as system flexibility and equipment heterogeneity. This may affect the stability of the entire RES, which results in further issues such as signal reliability and degraded coverage. Therefore, precise identification of user equipment’s (UE) location greatly improves the sustainability of 5G and 6G wireless services. In this work, we propose a novel low-complexity technique to automatically recognize UE locations in an area of interest. The approach aims at providing precise identification of UE with minimum memory and feature requirements. We use the lazy learning approach to build a prediction model to construct beam-attachment maps. We then train the model to provide distributed intelligent models to automatically recognize beam-attachment indexes. We compare the proposed approach with instance-based techniques to measure its ability at predicting beam-attachment maps. The results show that the proposed model has the ability to provide an accurate prediction with respect to the beam-attachment index (around 100%) with minimal complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call