Abstract

The recognition of the poetry meter in spoken lines is a natural language processing application that aims to identify a stressed and unstressed syllabic pattern in a line of a poem. Stateof-the-art studies include few works on the automatic recognition of Arud meters, all of which are text-based models, and none is voice based. Poetry meter recognition is not easy for an ordinary reader, it is very difficult for the listener and it is usually performed manually by experts. This paper proposes a model to detect the poetry meter from a single spoken line (“Bayt”) of an Arabic poem. Data of 230 samples collected from 10 poems of Arabic poetry, including three meters read by two speakers, are used in this work. The work adopts the extraction of linear prediction cepstrum coefficient and Mel frequency cepstral coefficient (MFCC) features, as a time series input to the proposed long short-term memory (LSTM) classifier, in addition to a global feature set that is computed using some statistics of the features across all of the frames to feed the support vector machine (SVM) classifier. The results show that the SVM model achieves the highest accuracy in the speakerdependent approach. It improves results by 3%, as compared to the state-of-the-art studies, whereas for the speaker-independent approach, the MFCC feature using LSTM exceeds the other proposed models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.