Abstract

We present a novel method for classifying alert vs drowsy states from 1 s long sequences of full spectrum EEG recordings in an arbitrary subject. This novel method uses time series of interhemispheric and intrahemispheric cross spectral densities of full spectrum EEG as the input to an artificial neural network (ANN) with two discrete outputs: drowsy and alert. The experimental data were collected from 17 subjects. Two experts in EEG interpretation visually inspected the data and provided the necessary expertise for the training of an ANN. We selected the following three ANNs as potential candidates: (1) the linear network with Widrow-Hoff (WH) algorithm; (2) the non-linear ANN with the Levenberg–Marquardt (LM) rule; and (3) the Learning Vector Quantization (LVQ) neural network. We showed that the LVQ neural network gives the best classification compared with the linear network that uses WH algorithm (the worst), and the non-linear network trained with the LM rule. Classification properties of LVQ were validated using the data recorded in 12 healthy volunteer subjects, yet whose EEG recordings have not been used for the training of the ANN. The statistics were used as a measure of potential applicability of the LVQ: the t-distribution showed that matching between the human assessment and the network output was 94.37±1.95%. This result suggests that the automatic recognition algorithm is applicable for distinguishing between alert and drowsy state in recordings that have not been used for the training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.