Abstract
Annotation of foot-contact and foot-off events is the initial step in post-processing for most quantitative gait analysis workflows. If clean force plate strikes are present, the events can be automatically detected. Otherwise, annotation of gait events is performed manually, since reliable automatic tools are not available. Automatic annotation methods have been proposed for normal gait, but are usually based on heuristics of the coordinates and velocities of motion capture markers placed on the feet. These heuristics do not generalize to pathological gait due to greater variability in kinematics and anatomy of patients, as well as the presence of assistive devices. In this paper, we use a data-driven approach to predict foot-contact and foot-off events from kinematic and marker time series in children with normal and pathological gait. Through analysis of 9092 gait cycle measurements we build a predictive model using Long Short-Term Memory (LSTM) artificial neural networks. The best-performing model identifies foot-contact and foot-off events with an average error of 10 and 13 milliseconds respectively, outperforming popular heuristic-based approaches. We conclude that the accuracy of our approach is sufficient for most clinical and research applications in the pediatric population. Moreover, the LSTM architecture enables real-time predictions, enabling applications for real-time control of active assistive devices, orthoses, or prostheses. We provide the model, usage examples, and the training code in an open-source package.
Highlights
One of the key elements in analysis of gait is the quantitative assessment of gait parameters collected in a reproducible setting
We assume that most of the clinics have a kinematic model producing similar output for joint angles, so we use many of these signals, but we reduce the set of marker trajectory signals to only a few of the most commonly used markers
Our comparisons show a substantial advantage of our method over the two selected heuristicbased algorithms
Summary
One of the key elements in analysis of gait is the quantitative assessment of gait parameters collected in a reproducible setting. Modern gait laboratories are equipped with motion capture systems that allow experimenters to track trajectories of markers positioned on a subject’s body. After collecting such data, experimenters fit a musculoskeletal model with associated markers and reconstruct body movement. Experimenters fit a musculoskeletal model with associated markers and reconstruct body movement This procedure allows computation of joint angles over time using inverse kinematics. These data are used in a variety of applications, ranging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.