Abstract

High-resolution, waveform-level data from bedside monitors carry important information about a patient's physiology but is also polluted with artefactual data. Manual mark-up is the standard practice for detecting and eliminating artefacts, but it is time-consuming, prone to errors, biased and not suitable for real-time processing.In this paper we present a novel automatic artefact detection technique based on a Symbolic Aggregate approXimation (SAX) technique which makes it possible to represent individual pulses as 'words'. It does that by coding each pulse with a specified number of letters (here six) from a predefined alphabet of characters (here six). The word is then fed to a support vector machine (SVM) and classified as artefactual or physiological.To define the universe of acceptable pulses, the arterial blood pressure from 50 patients was analysed, and acceptable pulses were manually chosen by looking at the average pulse that each 'word' generated. This was then used to train a SVM classifier. To test this algorithm, a dataset with a balanced ratio of clean and artefactual pulses was built, classified and independently evaluated by two observers achieving a sensitivity of 0.972 and 0.954 and a specificity of 0.837 and 0.837 respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call