Abstract

ObjectivesTo develop a deep learning–based pulmonary vessel segmentation algorithm (DLVS) from noncontrast chest CT and to investigate its clinical implications in assessing vascular remodeling of chronic obstructive lung disease (COPD) patients.MethodsFor development, 104 pulmonary CT angiography scans (49,054 slices) using a dual-source CT were collected, and spatiotemporally matched virtual noncontrast and 50-keV images were generated. Vessel maps were extracted from the 50-keV images. The 3-dimensional U-Net-based DLVS was trained to segment pulmonary vessels (with a vessel map as the output) from virtual noncontrast images (as the input). For external validation, vendor-independent noncontrast CT images (n = 14) and the VESSEL 12 challenge open dataset (n = 3) were used. For each case, 200 points were selected including 20 intra-lesional points, and the probability value for each point was extracted. For clinical validation, we included 281 COPD patients with low-dose noncontrast CTs. The DLVS-calculated volume of vessels with a cross-sectional area < 5 mm2 (PVV5) and the PVV5 divided by total vessel volume (%PVV5) were measured.ResultsDLVS correctly segmented 99.1% of the intravascular points (1,387/1,400) and 93.1% of the extravascular points (1,309/1,400). The areas-under-the receiver-operating characteristic curve (AUROCs) were 0.977 and 0.969 for the two external validation datasets. For the COPD patients, both PPV5 and %PPV5 successfully differentiated severe patients whose FEV1 < 50 (AUROCs; 0.715 and 0.804) and were significantly correlated with the emphysema index (Ps < .05).ConclusionsDLVS successfully segmented pulmonary vessels on noncontrast chest CT by utilizing spatiotemporally matched 50-keV images from a dual-source CT scanner and showed promising clinical applicability in COPD.Key Points • We developed a deep learning pulmonary vessel segmentation algorithm using virtual noncontrast images and 50-keV enhanced images produced by a dual-source CT scanner. • Our algorithm successfully segmented vessels on diseased lungs. • Our algorithm showed promising results in assessing the loss of small vessel density in COPD patients. Supplementary InformationThe online version contains supplementary material available at 10.1007/s00330-021-08036-z.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.