Abstract

The classification of handwriting into different categories, such as age, gender, and nationality, has several applications. In forensics, handwriting classification helps investigators focus on a certain category of writers. However, only a few studies have been carried out in this field. Classification of handwriting into a demographic category is generally performed in two steps: feature extraction and classification. The performance of a system depends mainly on the feature extraction step because characterizing features makes it possible to distinguish between writers. In this study, we propose several geometric features to characterize handwritings and use these features to perform the classification of handwritings with regards to age, gender, and nationality. Features are combined using random forests and kernel discriminant analysis. Classification rates are reported on the QUWI dataset, reaching 74.05% for gender prediction, 55.76% for age range prediction, and 53.66% for nationality prediction when all writers produce the same handwritten text and 73.59% for gender prediction, 60.62% for age range prediction, and 47.98% for nationality prediction when each writer produces different handwritten text.

Highlights

  • Handwritings can be classified into many categories including gender, age, handedness, and nationality

  • We present the results obtained for each individual feature as well as their combination using random forests and kernel discriminant analysis

  • 4.3 Discussion and analysis To test which feature combination is optimal for each classification problem, we plotted the average performance for the proposed geometric features (f1 to f3), chain code features (f4 to f7), edge-based directional features (f8 to 17), and filled edge-based directional features (f18 to f26)

Read more

Summary

Introduction

Handwritings can be classified into many categories including gender, age, handedness, and nationality. We have combined these features using a Random Forest classifier [13] with kernel discriminant analysis using spectral regression (SR-KDA). The classification results of those classifiers for all the presented features on the QUWI dataset will be shown .

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.