Abstract

Cardiovascular disease is the leading cause of human death worldwide, and acute coronary syndrome (ACS) is a common first manifestation of this. Studies have shown that pericoronary adipose tissue (PCAT) computed tomography (CT) attenuation and atherosclerotic plaque characteristics can be used to predict future adverse ACS events. However, radiomics-based methods have limitations in extracting features of PCAT and atherosclerotic plaques. Therefore, we propose a hybrid deep learning framework capable of extracting coronary CT angiography (CCTA) imaging features of both PCAT and atherosclerotic plaques for ACS prediction. The framework designs a two-stream CNN feature extraction (TSCFE) module to extract the features of PCAT and atherosclerotic plaques, respectively, and a channel feature fusion (CFF) to explore feature correlations between their features. Specifically, a trilinear-based fully-connected (FC) prediction module stepwise maps high-dimensional representations to low-dimensional label spaces. The framework was validated in retrospectively collected suspected coronary artery disease cases examined by CCTA. The prediction accuracy, sensitivity, specificity, and area under curve (AUC) are all higher than the classical image classification networks and state-of-the-art medical image classification methods. The experimental results show that the proposed method can effectively and accurately extract CCTA imaging features of PCAT and atherosclerotic plaques and explore the feature correlations to produce impressive performance. Thus, it has the potential value to be applied in clinical applications for accurate ACS prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call