Abstract

This study examined the effects of the absence of vision from birth on automatic postural responses to platform displacements during stance. Postural responses were induced by producing randomly four types of perturbations which consisted of forward and backward translations, and toe up and down rotations. Nine congenitally totally blind and nine sighted adults served as subjects. EMG signals were recorded from four muscles in the right leg, and reaction time to somatosensory stimuli generated by platform displacements was measured by pushing a hand-held button. To assess the ability to control postural balance, the root mean square (RMS) values for lateral and antero-posterior sway before, during, and after perturbations were calculated. The EMG amplitude in the gastrocnemius muscle of a blind subject was smaller than that of a sighted subject with eyes closed. No significant differences were found between blind and sighted subjects in EMG latencies of the lower extremity muscles in response to perturbations. The blind subjects had significantly faster reaction times to somatosensory stimuli triggered by platform displacements, but in toe down rotations no significant difference was found between blind and sighted subjects. The difference in the EMG latencies and reaction times between the two groups suggests that blindness from birth may not affect the spinal stretch reflex, but may affect a volitional act mediated through the motor cortex. There were also no significant differences in the RMS values for postural sway between blind and sighted subjects with eyes open or closed, although blind subjects swayed more after backward translations than did sighted subjects with eyes open. Results suggest that the ability to control postural balance during perturbations was not affected by vision loss from birth. Our findings suggest that the automatic postural response systems of humans are unaffected by the absence of vision from birth and are rather hard wired.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call