Abstract

In this paper, we propose a solution to the problem of playlist generation. In order to capture user listening preference and recommend playlists, we maintain user profiles by keeping listening history. Then, we apply the sequential pattern mining algorithm with multiple minimum supports on user profiles to derive constraints. Given a set of derived constraints, we apply the tabu search to generate playlists which match constraints as much as possible. Finally, we implement our prototype and perform experiments to show the feasibility, efficiency, and effectiveness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.