Abstract
Plastic greenhouses (PGs) play a vital role in modern agricultural development by providing a controlled environment for the cultivation of food crops. Their widespread adoption has the potential to revolutionize agriculture and impact the local environment. Accurate mapping and estimation of PG coverage are critical for strategic planning in agriculture. However, the challenge lies in the extraction of small and densely distributed PGs; this is often compounded by issues like irrelevant and redundant features and spectral confusion in high-resolution remote-sensing imagery, such as Gaofen-2 data. This paper proposes an innovative approach that combines the power of a full convolutional network (FC-DenseNet103) with an image enhancement index. The image enhancement index effectively accentuates the boundary features of PGs in Gaofen-2 satellite images, enhancing the unique spectral characteristics of PGs. FC-DenseNet103, known for its robust feature propagation and extensive feature reuse, complements this by addressing challenges related to feature fusion and misclassification at the boundaries of PGs and adjacent features. The results demonstrate the effectiveness of this approach. By incorporating the image enhancement index into the DenseNet103 model, the proposed method successfully eliminates issues related to the fusion and misclassification of PG boundaries and adjacent features. The proposed method, known as DenseNet103 (Index), excels in extracting the integrity of PGs, especially in cases involving small and densely packed plastic sheds. Moreover, it holds the potential for large-scale digital mapping of PG coverage. In conclusion, the proposed method providing a practical and versatile tool for a wide range of applications related to the monitoring and evaluation of PGs, which can help to improve the precision of agricultural management and quantitative environmental assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.