Abstract

For FPGA-based scientific simulation systems, hardware design technique that can reduce required amount of hardware resources is a key issue, since the size of simulation target is often limited by the size of the FPGA. Focusing on FPGA-based biochemical simulation, this paper proposes hardware design methodology which finds and combines common datapath for similar rate law functions appeared in simulation target models, so as to generate area-effective pipelined hardware modules. In addition, similarity-based clustering techniques of rate law functions are also presented in order to alleviate negative effects on performance for combined pipelines. Empirical evaluation with a practical biochemical model reveals that our method enables the simulation with 66% of the original hardware resources at a reasonable cost of 20% performance overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.