Abstract

Regression modelling often presents a trade-off between predictiveness and interpretability. Highly predictive and popular tree-based algorithms such as Random Forest and boosted trees predict very well the outcome of new observations, but the effect of the predictors on the result is hard to interpret. Highly interpretable algorithms like linear effect-based boosting and MARS, on the other hand, are typically less predictive. Here we propose a novel regression algorithm, automatic piecewise linear regression (APLR), that combines the predictiveness of a boosting algorithm with the interpretability of a MARS model. In addition, as a boosting algorithm, it automatically handles variable selection, and, as a MARS-based approach, it takes into account non-linear relationships and possible interaction terms. We show on simulated and real data examples how APLR’s performance is comparable to that of the top-performing approaches in terms of prediction, while offering an easy way to interpret the results. APLR has been implemented in C++ and wrapped in a Python package as a Scikit-learn compatible estimator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call