Abstract

Optic disc measurements provide useful diagnostic information as they have correlations with certain eye diseases. In this paper, we provide an automatic method for detecting the optic disc in a single OCT slice. Our method is developed from the observation that the retinal pigment epithelium (RPE) which bounds the optic disc has a low-rank appearance structure that differs from areas within the disc. To detect the disc, our method acquires from the OCT image an RPE appearance model that is specific to the individual and imaging conditions, by learning a low-rank dictionary from image areas known to be part of the RPE according to priors on ocular anatomy. The edge of the RPE, where the optic disc is located, is then found by traversing the retinal layer containing the RPE, reconstructing local appearance with the low-rank model, and detecting the point at which appearance starts to deviate (i.e., increased reconstruction error). To aid in this detection, we also introduce a geometrical constraint called the distance bias that accounts for the smooth shape of the RPE. Experiments demonstrate that our method outperforms other OCT techniques in localizing the optic disc and estimating disc width. Moreover, we also show the potential usage of our method on optic disc area detection in 3-D OCT volumes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.