Abstract

Automatic on-line signature verification is an intriguing intellectual challenge with many practical applications. I review the context of this problem and then describe my own approach to it, which breaks with tradition by relying primarily on the detailed shape of a signature for its automatic verification, rather than relying primarily on the pen dynamics during the production of the signature. I propose a robust, reliable, and elastic local-shape-based model for handwritten on-line curves; this model is generated by first parameterizing each on-line curve over its normalized arc-length and then representing along the length of the curve, in a moving coordinate frame, measures of the curve within a sliding window that are analogous to the position of the center of mass, the torque exerted by a force, and the moments of inertia of a mass distribution about its center of mass. Further I suggest the weighted and biased harmonic mean as a graceful mechanism of combining errors from multiple models of which at least one model is applicable but not necessarily more than one model is applicable, recommending that each signature be represented by multiple models, these models, perhaps, local and global, shape based and dynamics based. Finally, I outline a signature-verification algorithm that I have implemented and tested successfully both on databases and in live experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call