Abstract
Accurately determining system order plays a vital role in system identification directly related to the accuracy of identification results, especially for nonlinear system identification. Due to the need for human subjective judgment, the traditional sequence determination method easily causes uncertainty in the results; and the phenomenon of the virtual mode or omission occurs. An automatic nonlinear subspace identification method is proposed to address the aforementioned problems. When the eigenvalue decomposition of the constructed Hankel matrix is performed, the calculation range of the modal order of the system is estimated. The similarity coefficient and distance function are introduced to cluster the identified modal results, the poles of the false modes are removed to obtain the cluster stabilization diagram, and the best order of the system is received. Then, the modal parameters and nonlinear coefficients are obtained. Simulation examples are carried out to verify the effectiveness and robustness of the proposed method. An experimental study is carried out on a multilayer building with nonlinear characteristics. Compared with the traditional stabilization graph, the accuracy of the automatic order determination proposed in this paper is proven.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.