Abstract

The authors propose a new method to automatically normal move-out correct pre-stack seismic reflection data that is sorted by CDP gathers, and to estimate the normal move-out (NMO) velocity (Vnmo) as a full common depth point (CDP) velocity field that instantaneously varies with offsets/azimuths. The method is based on doing a pre-defined number of NMO velocity iterations using linear vertical interpolation of different NMO velocities at each seismic trace individually. At each iteration the seismic trace is shifted and multiplied by the zero offset trace followed by the summation of the product. Then, after all the iterations are done, the one with the maximum summation value is chosen, which is assumed to be the most suitable NMO velocity trace that accurately flattens seismic reflection events. The other traces follow the same process, and a final velocity field is then extracted. Another new, simple and fast method is also introduced to estimate the anisotropic effect from the extracted NMO velocity field. The method runs by calculating the spatial variation of the estimated NMO velocities at each arrival time and offset/azimuth, therefore instantaneously estimating the anisotropic effect. Isotropic and anisotropic synthetic geological models were built based on a ray-tracing algorithm to test the method. A range of synthetic background noise was applied, starting from 10–30%. The method has also been tested on Hess’s model and coal seam gas field data CDP examples. An Alaskan pre-stack seismic CDP field example has also been used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call