Abstract

This article presents a systematic review of the current computational technologies applied to medical images for the detection, segmentation, and classification of strokes. Besides, analyzing and evaluating the technological advances, the challenges to be overcome and the future trends are discussed. The principal approaches make use of artificial intelligence, digital image processing and analysis, and various other technologies to develop computer-aided diagnosis (CAD) systems to improve the accuracy in the diagnostic process, as well as the interpretation consistency of medical images. However, there are some points that require greater attention such as low sensitivity, optimization of the algorithm, a reduction of false positives, and improvement in the identification and segmentation processes of different sizes and shapes. Also, there is a need to improve the classification steps of different stroke types and subtypes. Furthermore, there is an additional need for further research to improve the current techniques and develop new algorithms to overcome disadvantages identified here. The main focus of this research is to analyze the applied technologies for the development of CAD systems and verify how effective they are for stroke detection, segmentation, and classification. The main contributions of this review are that it analyzes only up-to-date studies, mainly from 2015 to 2018, as well as organizing the various studies in the area according to the research proposal, i.e., detection, segmentation, and classification of the types of stroke and the respective techniques used. Thus, the review has great relevance for future research, since it presents an ample comparison of the most recent works in the area, clearly showing the existing difficulties and the models that have been proposed to overcome such difficulties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.