Abstract
Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN). Mask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references. In prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (dxy) of 0.71mm and median difference in axis orientation angle (dθ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75ms/image: (a) median dxy = 0.90mm, median dθ = 1.53°; (b) median dxy = 1.31mm, median dθ = 1.9°; (c) median dxy = 1.09mm, median dθ = 0.91°. The proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Assisted Radiology and Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.