Abstract

Background Previously a myocardial tissue classification algorithm has been developed to locate and quantify infarct in a given myocardial region-of-interest specified on late gadolinium enhancement (LGE) MR images [1]. To complete the automation requires an endocardial and epicardial contour detection algorithm to replace the current practice of manual contouring that is time-consuming and subject to intraand inter-observer variability. Challenges include: 1) the intensity inhomogeneity of both the healthy and infarct myocardium; 2) the existence of an infarct on a given slice is not known a priori; 3) a subendocardial infarct region’s boundary can be easily mistaken for the endocardial contour due to the proximity and strength of the edge (gradient); and 4) incorporating prior anatomical information (e.g., cine steady-state free precession (SSFP) MRI) while allowing for possible motion between separate studies.

Highlights

  • A myocardial tissue classification algorithm has been developed to locate and quantify infarct in a given myocardial region-of-interest specified on late gadolinium enhancement (LGE) MR images [1]

  • The contours were refined by minimizing the deformable contour energy function locally with greedy optimization [3]

  • 1Imaging Research, Sunnybrook research institute, Toronto, ON, Canada Full list of author information is available at the end of the article. This is a substantial improvement compared with previous rate of about 50% when propagating cine contours without the deformable contour algorithm

Read more

Summary

Background

A myocardial tissue classification algorithm has been developed to locate and quantify infarct in a given myocardial region-of-interest specified on late gadolinium enhancement (LGE) MR images [1]. To complete the automation requires an endocardial and epicardial contour detection algorithm to replace the current practice of manual contouring that is time-consuming and subject to intra- and inter-observer variability. Challenges include: 1) the intensity inhomogeneity of both the healthy and infarct myocardium; 2) the existence of an infarct on a given slice is not known a priori; 3) a subendocardial infarct region’s boundary can be mistaken for the endocardial contour due to the proximity and strength of the edge (gradient); and 4) incorporating prior anatomical information (e.g., cine steady-state free precession (SSFP) MRI) while allowing for possible motion between separate studies

Methods
Results
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.