Abstract

Abstract— The size of flat‐panel liquid‐crystal displays is getting larger; as a result, it is becoming harder to inspect for defects and may require a human visual inspector to judge the severity of the defects on the final product. Recently, mura phenomenon, which is defined as a visual blemish with non‐uniform shapes and boundaries, is becoming a serious unpleasant effect which needs to be detected and inspected in orderto standardize the LCD's quality. Hence, an automation process based on machine vision has proven to be a good choice to facilitate and stabilize the process. An effective general algorithm for detecting different types of mura defects with various contrast, shape, and direction, based on the fusion of the normalized magnitude of first‐ and second‐order derivative responses in four directions, is proposed. The experiments applied on various types of pseudo‐mura with different shapes show an efficient detection rate of more than 90%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.