Abstract

One of the key challenges in Additive Manufacturing is to develop a robust algorithm to slice CAD models into a set of layers which requires minimal support structures. This paper reports the concept and implementation of a new strategy for multi-direction slicing of CAD models represented in STL format. Differing from the existing multi-direction slicing approaches that are mainly focused on finding an optimal volume decomposition strategy, this study presents a decomposition-regrouping method. The CAD model is firstly decomposed into sub-volumes using a simple curvature-based volume decomposition method. Then a depth-tree structure based on topology information is introduced to merge them into ordered groups for slicing. In addition, a model simplification step is introduced before CAD model decomposition to significantly enhance the capability of the proposed multi-direction strategy. The proposed strategy is shown to be simple and efficient on various tests parts especially for geometries with large number of holes. Multi-direction slicing algorithms are developed for wire based additive manufacturing.A new strategy of volume decomposition-regrouping is reported.Model simplification (hole-filling) is performed to simplify CAD models.The proposed strategy is simple and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.