Abstract

Independence of genes is commonly but incorrectly assumed in microarray data analysis; rather, genes are activated in co-regulated sets referred to as modules. In this article, we develop an automatic method to define modules common to multiple independent studies. We use an empirical Bayes procedure to estimate a sparse correlation matrix for all studies, identify modules by clustering, and develop an extreme-value-based method to detect so-called scattered genes, which do not belong to any module. The resulting algorithm is very fast and produces accurate modules in simulation studies. Application to real data identifies modules with significant enrichment and results in a huge dimension reduction, which can alleviate the computational burden of further analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.