Abstract

Automatic modulation recognition (AMR) is a significant technology in noncooperative wireless communication systems. This paper proposes a deep complex network that cascades the bidirectional long short-term memory network (DCN-BiLSTM) for AMR. In view of the fact that the convolution operation of the traditional convolutional neural network (CNN) loses the partial phase information of the modulated signal, resulting in low recognition accuracy, we first apply a deep complex network (DCN) to extract the features of the modulated signal containing phase and amplitude information. Then, we cascade bidirectional long short-term memory (BiLSTM) layers to build a bidirectional long short-term memory model according to the extracted features. The BiLSTM layers can extract the contextual information of signals well and address the long-term dependence problems. Next, we feed the features into a fully connected layer. Finally, a softmax classifier is used to perform classification. Simulation experiments show that the performance of our proposed algorithm is better than that of other neural network recognition algorithms. When the signal-to-noise ratio (SNR) exceeds 4 dB, our model’s recognition rate for the 11 modulation signals can reach 90%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.