Abstract

We focus on the dimensioning process of cellular networks that addresses the evaluation of equipment global costs to cover a city. To deal with frequency assignment, that constitutes the most critical resource in mobile systems, the network is usually modeled as a pattern of regular hexagonal cells. Each cell represents the area covered by the signal of a transmitter or base station (BS). Our work emphasizes on the design of irregular hexagonal cells in an adaptive way. Hexagons transform themselves and adapt their shapes according to a traffic density map and to geometrical constraints. This process, called adaptive meshing (AM), may be seen as a solution to minimize the required number of BS to cover a region and to propose a basis for transmitter positioning. The solution we present to the mesh generation problem for mobile network dimensioning is based on the use of an evolutionary algorithm. This algorithm, called hybrid island evolutionary strategy (HIES), performs distributed computation. It allows the user to tackle problem instances with large traffic density map requiring several hundreds of cells. HIES combines local search fast computation on individuals, incorporated into a global island-like strategy. Experiments are done on one real case representing the mobile traffic load of the second French city of Lyon and on several other traffic maps from urban fictive data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.