Abstract

An automated method for determination of short-term variability (STV) of repolarization on intracardiac electrograms (STV-ARIauto) has previously been developed for arrhythmic risk monitoring by cardiac implantable devices, and has proved effective in predicting ventricular arrhythmias (VA) and guiding preventive high-rate pacing (HRP) in a canine model. Current study aimed to assess (i) STV-ARIauto in relation to VA occurrence and secondarily (ii-a) to confirm the predictive capacity of STV from the QT interval and (ii-b) explore the effect of HRP on arrhythmic outcomes in a porcine model of acute myocardial infarction (MI). Myocardial infarction was induced in 15 pigs. In 7/15 pigs, STV-QT was assessed at baseline, occlusion, 1 min before VA, and just before VA. Eight of the 15 pigs were additionally monitored with an electrogram catheter in the right ventricle, underwent echocardiography at baseline and reperfusion, and were randomized to paced or control group. Paced group received atrial pacing at 20 beats per min faster than sinus rhythm 1 min after occlusion. Short-term variability increased prior to VA in both STV modalities. The percentage change in STV from baseline to successive timepoints correlated well between STV-QT and STV-ARIauto. High-rate pacing did not improve arrhythmic outcomes and was accompanied by a stronger decrease in ejection fraction. STV-ARIauto values increase before VA onset, alike STV-QT in a porcine model of MI, indicating imminent arrhythmias. This highlights the potential of automatic monitoring of arrhythmic risk by cardiac devices through STV-ARIauto and subsequently initiates preventive strategies. Continuous HRP during onset of acute MI did not improve arrhythmic outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call