Abstract

Background and objectiveThe detection and characterization of the intraretinal fluid accumulation constitutes a crucial ophthalmological issue as it provides useful information for the identification and diagnosis of the different types of Macular Edema (ME). These types are clinically defined, according to the clinical guidelines, as: Serous Retinal Detachment (SRD), Diffuse Retinal Thickening (DRT) and Cystoid Macular Edema (CME). Their accurate identification and characterization facilitate the diagnostic process, determining the disease severity and, therefore, allowing the clinicians to achieve more precise analysis and suitable treatments. MethodsThis paper proposes a new fully automatic system for the identification and characterization of the three types of ME using Optical Coherence Tomography (OCT) images. In the case of SRD and CME edemas, multilevel image thresholding approaches were designed and combined with the application of ad-hoc clinical restrictions. The case of DRT edemas, given their complexity and fuzzy regional appearance, was approached by a learning strategy that exploits intensity, texture and clinical-based information to identify their presence. ResultsThe system provided satisfactory results with F-Measures of 87.54% and 91.99% for the DRT and CME detections, respectively. In the case of SRD edemas, the system correctly detected all the cases that were included in the designed dataset. ConclusionsThe proposed methodology offered an accurate performance for the individual identification and characterization of the three different types of ME in OCT images. In fact, the method is capable to handle the ME analysis even in cases of significant severity with the simultaneous existence of the three ME types that appear merged inside the retinal layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.