Abstract

Transport triggered architectures are used for implementing bio-inspired systems due to their simplicity, modularity and fault-tolerance. However, producing efficient, optimised machine code for such architectures is extremely difficult, since computational complexity has moved from the hardware-level to the software-level. Presented is the application of Cartesian Genetic Programming (CGP) to the evolution of machine code for a simple implementation of transport triggered architecture. The effectiveness of the algorithm is demonstrated by evolving machine code for a 4-bit multiplier with three different levels of parallelism. The results show that 100% successful solutions were found by CGP and by further optimising the size of the solutions, it’s possible to find efficient implementations of the 4-bit multiplier. Further analysis of the solutions showed that use of loops within the CGP function set could be beneficial and was demonstrated by repeating the earlier 4-bit multiplier experiment with the addition of a loop function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.