Abstract

This paper presents a design method and experiments for whole-body locomotion by a modular robot. There are two types of locomotion for modular robots: a repeating self-reconfiguration and whole-body motion such as walking or crawling. For whole-body locomotion, designing a control method is more difficult than for ordinary robots because a modular robotic system can form various configurations, each of which has many degrees of freedom. This study proposes a unified framework for automatically designing an efficient locomotion controller suitable for any module configuration. The method utilizes neural oscillators (central pattern generators, CPGs), each of which works as a distributed joint controller of each module, and a genetic algorithm to optimize the CPG network. We verified the method by software simulations and hardware experiments, in which our modular robotic system, named M-TRAN II, performed stable and effective locomotion in various configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call