Abstract

ABSTRACT Lung lobar segmentation in CT images is a challenging tasks because of the limitations in image quality inherent to CT image acquisition, especially low-dose CT for clinical routine environment. Besides, complex anatomy and abnormal lesions in the lung parenchyma makes segmentation difficult because contrast in CT images are determined by the differential absorption of X-rays by neighboring structures, such as tissue, vessel or several pathological conditions. Thus, we attempted to develop a robust segmentation technique for normal and diseased lung parenchyma. The images were obtained with low-dose chest CT using soft reconstruction kernel (Sensation 16, Siemens, Germany). Our PC-based in-house software segmented bronchial trees and lungs with intensity adaptive region-growing technique. Then the horizontal and oblique fissures were detected by using eigenvalues-ratio of the Hessian matrix in the lung regions which were excluded from airways and vessels. To enhance and recover the faithful 3-D fissure plane, our proposed fissure enhancing scheme were applied to the images. After finishing above steps, for careful smoothening of fissure planes, 3-D rolling-ball algorithm in xyz planes were performed. Results show that success rate of our proposed scheme was achieved up to 89.5% in the diseased lung parenchyma. Keywords: low-dose CT, lung lobes, fissure, segmentation, image processing

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.