Abstract

Power failure is a short or long term loss of electric power to an area mostly cost cause by short circuit, damage to electric transmission line, overvoltage, faults at power stations and more commonly failure due to overloading. The possible damage areas are affected by losing power. The one inherent problem with standard power sharing and monitoring units is their broadcast strength. Since you have to be physically close to the alarm to hear it, you might not get notified in time to actually prevent overload. The microcontroller based load sharing and control system is a device that automatically controls overload on a generator by sharing power and cut off supply once the power consumption exceeds the amount of power supplied. The control system for controlling the AC loads will be selected within a power range of 500W. This is achieved by using a microcontroller PIC16F877A to automatically detect an overload and subsequently cut off supply. The method used in the project provides necessary stages from overload detection to switching/cutting off supply. The main aim of the work is to provide a non-interrupted power supply to the energy consumers. By implementation of this scheme the problem of interruption of supply due to generator overloading can be avoided. The work was fairly successful and there liability level expected is commendable as this may also create room for improvement. The project was tested and observed that it cut off supply as soon as the microcontroller senses an overload on the system by the user.

Highlights

  • Electricity is an extremely handy and useful form of energy

  • In order to verify the correct functionality of the system, all components were tested individually and each of the sub unit was build on the board and monitored before it was transformed to main construction board

  • The proposed work provides an efficient way for load sharing and control at real time

Read more

Summary

Introduction

Electricity is an extremely handy and useful form of energy. It plays an ever growing role in our modern industrialized society. Such electric power systems are unified for economical benefits, increased reliability and operational advantages They are one of the most significant elements of both national and global infrastructure, and when these systems collapse it leads to major direct and indirect impacts on the economy and national security [2]. This makes one to realize that if load is increasing rapidly and power generation is constant it is not possible for the system to drive the future needs. For this reason distributed power generations is receiving an attention of the researchers around the globe to be used in remote and rural areas [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.