Abstract

Due to the complex structure of liver tumors and the low contrast with normal tissues make it still a challenging task to accurately segment liver tumors from CT images. To address these problems, we propose an end-to-end segmentation method for liver tumors. The method uses a cascade structure to improve the network's extraction of information. First, the Side-output Feature Fusion Attention block is used to fuse features at different levels and combine with attention mechanism to focus on important information. Then, the Atrous Spatial Pyramid Pooling Attention block is used to extract multi-scale semantic features. Finally, the Multi-scale Prediction Fusion block is used to fully fused the features captured at each layer of the network. To verify the performance of the proposed model and the effectiveness of each module, we evaluate it on LiTS and 3DIRCADb datasets and obtained Dice per Case of 0.665 and 0.719, respectively, and Dice Global of 0.812 and 0.784, respectively. The proposed method is compared with the basic model 3D U-Net, as well as some mainstream methods based on U-Net variants, and our method achieves better performance on the liver tumor segmentation task and is superior to most segmentation algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.