Abstract

Automatic License Plate Recognition (ALPR) has remained an active research topic for years due to various applications, especially in Intelligent Transportation Systems (ITS). This paper presents an efficient ALPR technique based on deep learning, which accurately performs license plate (LP) recognition tasks in an unconstrained environment, even when trained on a limited dataset. We capture real traffic videos in the city and label the LPs and the alphanumeric characters in the LPs within different frames to generate training and testing datasets. Data augmentation techniques are applied to increase the number of training and testing samples. We apply the transfer learning approach to train the recently released YOLOv5 object detecting framework to detect the LPs and the alphanumerics. Next, we train a convolutional neural network (CNN) to recognize the detected alphanumerics. The proposed technique achieved a recognition rate of 92.8% on a challenging proprietary dataset collected in several jurisdictions of Saudi Arabia. This accuracy is higher than what was achieved on the same dataset by commercially available Sighthound (86%), PlateRecognizer (67%), OpenALPR (77%), and a state-of-the-art recent CNN model (82%). The proposed system also outperformed the existing ALPR solutions on several benchmark datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.