Abstract

Authors proposes a nonparametric method for automatically selecting the number of autocovariances to use in computing a heteroskedasticity and autocorrelation consistent covariance matrix. For a given kernel for weighting the autocovariances, we prove that our procedure is asymptotically equivalent to one that is optimal under a mean-squared error loss function. Monte Carlo simulations suggest that our procedure performs tolerably well, although it does result in size distortions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.