Abstract
This paper addresses the problem of quantifying biomarkers in multi-stained tissues based on the color and spatial information of microscopy images of the tissue. A deep learning-based method that can automatically localize and quantify the regions expressing biomarker(s) in any selected area on a whole slide image is proposed. The deep learning network, which we refer to as Whole Image (WI)-Net, is a fully convolutional network whose input is the true RGB color image of a tissue and output is a map showing the locations of each biomarker. The WI-Net relies on a different network, Nuclei (N)-Net, which is a convolutional neural network that classifies each nucleus separately according to the biomarker(s) it expresses. In this study, images of immunohistochemistry (IHC)-stained slides were collected and used. Images of nuclei (4679 RGB images) were manually labeled based on the expressing biomarkers in each nucleus (as p16 positive, Ki-67 positive, p16 and Ki-67 positive, p16 and Ki-67 negative). The labeled nuclei images were used to train the N-Net (obtaining an accuracy of 92% in a test set). The trained N-Net was then extended to WI-Net that generated a map of all biomarkers in any selected sub-image of the whole slide image acquired by the scanner (instead of classifying every nucleus image). The results of our method compare well with the manual labeling by humans (average F-score of 0.96). In addition, we carried a layer-based immunohistochemical analysis of cervical epithelium, and showed that our method can be used by pathologists to differentiate between different grades of cervical intraepithelial neoplasia by quantitatively assessing the percentage of proliferating cells in the different layers of HPV positive lesions.
Highlights
This study addresses the automation of Immunohistochemistry (IHC) image analysis in quantitative pathology
We address the automation of IHC image analysis in quantitative pathology
A closer look at the results reveals that the presence of p16 in the Cervical Intraepithelial Neoplasia 3 (CIN3) tissue was slightly under-estimated by the color deconvolution method, while it was slightly over-estimated by our Whole Image (WI)-Net
Summary
This study addresses the automation of Immunohistochemistry (IHC) image analysis in quantitative pathology. Using pre-defined features in IHC image analysis raises the concern of low reproducibility and lack of robustness, due to variations in the nuclei and cell appearance that are caused by the different staining and tissue processing procedures used by different laboratories. The proposed deep learning network is a fully convolutional neural network that can take an IHC image as an input, and detect and locate the different biomarkers presented in all cells of the image. This network is an extension of a convolutional neural network that is trained by using RGB images of nuclei, to classify a nucleus according to its expressed biomarker. The fully connected layers of the N-Net were converted to convolutional layers [17]; this was done for the purpose of modifying these layers to make them independent of the spatial size
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.