Abstract
Accurate parcellation and labeling of primary cortical sulci in the human fetal brain is useful for regional analysis of brain development. However, human fetal brains show large spatio-temporal changes in brain size, cortical folding patterns, and relative position/size of cortical regions, making accurate automatic sulcal labeling challenging. Here, we introduce a novel sulcal labeling method for the fetal brain using spatio-temporal gyrification information from multiple fetal templates. First, spatial probability maps of primary sulci are generated on the templates from 23 to 33 gestational weeks and registered to an individual brain. Second, temporal weights, which determine the level of contribution to the labeling for each template, are defined by similarity of gyrification between the individual and the template brains. We combine the weighted sulcal probability maps from the multiple templates and adopt sulcal basin-wise approach to assign sulcal labels to each basin. Our labeling method was applied to 25 fetuses (22.9–29.6 gestational weeks), and the labeling accuracy was compared to manually assigned sulcal labels using the Dice coefficient. Moreover, our multi-template basin-wise approach was compared to a single-template approach, which does not consider the temporal dynamics of gyrification, and a fully-vertex-wise approach. The mean accuracy of our approach was 0.958 across subjects, significantly higher than the accuracies of the other approaches. This novel approach shows highly accurate sulcal labeling and provides a reliable means to examine characteristics of cortical regions in the fetal brain.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.