Abstract
Smoothing b-splines constitute a powerful and popular methodology for performing nonparametric regression with high accuracy. It is well known that the placement of the knots in spline smoothing approximation has an important and considerable effect on the behavior of the final approximation. For this purpose, in this paper a novel methodology is presented for optimal placement and selections of knots, in order to approximate or fit curves to data, using smoothing splines. A new method based on improved clustering algorithm is used to optimally select a reduced number of knots for constructing the base of the b-spline, while ensuring the best accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.