Abstract

Calibration continues to receive significant attention in robotics because of its key impact on performance and cost associated with the operation of complex robots. Calibration of kinematic parameters is typically the first mandatory step. To this end, a variety of metrology systems and corresponding algorithms have been described in the literature relying on measurements of the pose of the end-effector using a camera or laser tracking system, or, exploiting constraints arising from contacts of the end-effector with the environment. In this work, we take inspiration from the behavior of infants and certain animals, who are believed to use self-stimulation or self-touch to “calibrate” their body representations, and present a new solution to this problem by letting the robot close the kinematic chain by touching its own body. The robot considered in this paper is sensorized with tactile arrays for a total of about 4200 sensing points. The correspondence between the predicted contact point from existing forward kinematics and the actual position on the robot’s ‘skin’ provides sample data that allows refining the kinematic representation (DH parameters). The data collection procedure is automated—self-touch is autonomously executed by the robot—and can be repeated at any time, providing a compact self-calibration system that does not require an external measurement apparatus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.